高等数学下学期模拟试题(三)
一、填空(每小题3分,总12分,将答案填在题中横线上,不填解题过程)
1.已知D是由直线x+y=1,x-y=1及x=0所围, 则 =
2.设 正方形闭路
,则
=
3.曲面 与平面 在点(1,-2,-3)处的夹角为
.
4.函数项级数 的收敛域为
.
二、选择题(每小题3分,总12分。每小题给出四种选择,有且仅有一个是正确的,将你认为正确的代号填入括号内)。
1. , 为 在第一象限部分的区域且 ,则使 成立的条件是( )。
(A) 及区域 均关于原点对称;
(B) 关于 轴、 轴对称, 关于原点对称。
(C) 关于原点对称, 关于 、 轴对称;
(D) 及 均关于 、 轴对称。
2.二元函数 在点 处可导(指偏导数存在)与可微的关系为( )。
(A)可导必可微;
(B)可导一定不可微;
(C)可微必可导;
(D)可微不一定可导。.
3.设 是方程 的一个解,若 ,且 ,则函数 在点 ( )。
(A)取得极大值; (B)取得极小值;
(C)某个邻域内单调增加; (D)某个邻域内单调减少。
4.函数 在点 处具有两个偏导数 、 是函数存在全微分的( )。
(A)充分条件; (B)充要条件;
(C)必要条件; (D)既不充分也不必要。
三、计算下列各题(每小题6分,总30分)
1.求 ,其中D是
2.设两非零矢量阿a与b不共线,确定k,使两个矢量ka+b与a+kb共线.
3.计算 ,其中Γ是 。
4.计算 ,其中∑为球面
。
5.求方程 的通解。
四、(8分)设一平面垂直于 ,且通过从点 到直线 的垂线,求该平面的方程。
五、(8分)设函数 ,其中 具有二阶连续导数, 、
皆可微,求 .
六、(8分)设有一均匀物体(r=1),它占有的空间区域是由曲面 与平面z=ln4及z=ln9围成的区域,求该物体对z轴的转动惯量.
七、(8分)求二元函数 在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值,最大值与最小值.
八、(8分)试计算曲面积分 ,其中 是曲面 与平面 及 所围立体表面的内侧..
九、(6分)设正项数列 单调减少,且 发散,证明 收敛。