秦惠增
(职称:硕导、教授; 荣誉称号:美国数学评论员)
秦惠增,1957年4月出生,教授。主要研究方向:微分方程,特殊函数,数值计算
中文名: 秦惠增                        职称 : 教授
出生日期 : 1957.04                       所在单位: 山东理工大学
教学、科研、课题情况及指导研究生情况简介:
1、学术简历
本人自1982年本科毕业,曾在内蒙古民族医学院、山西矿业学院、太原理工大学工作,2002年来到山东理工大学工作,先后承担了省部级自然基金五项(其中主持两项)、国家自然基金两项。研究方向:双曲性方程的惠更斯原理、非线性微分方程的定性理论与振动理论,对于特殊函数也由浓厚的兴趣,特别是复杂积分和级数的级数问题。发表学术论文30余篇,获得了多项科研奖励。
2、教学情况(100字以内)
近五年主讲过本科生的, 承担高等数学。研究生的数值分析、数学物理方法、、微分方程、概率论与数理统计等课程。 从参加工作至今,多次本科毕业生的毕业设计或毕业论文。
3、主要科研成果 论文发表情况(2006年来代表性论文)
[1] Huizeng Qin, Nina Shang and Youmin Lu, A note on oscillation criteria of second order nonlinear neutral delay differential equations, Computers & Mathematics with Applications, December 2008, Pages 2987-2992 (SCI,EI)
[2] Huizeng Qin and Youmin Lu, A Note on an Open Problem about the First Painleve Equation,Acta Mathematicae Applicatae Sinica, Volume 24, Number 2 (2008 )(SCI)
[3] Huizeng Qin, Youmin Lu, oscillation criteria for second order nonlinear differential equations with distributed deviating arguments and damping term, International Journal of Pure and Applied Mathematics, Volume 48 No.2 (2008), 253-266
[4] N Shang, F Xu, H Qin, Oscillation Theorems for Some Neutral Delay Differential Equations, International Journal of Mathematical analysis Online Edition, Vol. 2, 2008, no. 17-20
[5] Huizeng Qin and Nina Shang, Asymptotics Analysis of a Bounded Solution to the General Third Painlevé Equation, MJMS V18.2(2006) 125-134 .
[6] Huizeng Qin and Youmin Lu, On the asymptotics of the real solutions to the general sixth Painlevé equation, International Journal of Mathematics and Mathematical Sciences Volume 2006 (2006), Article ID 69562, 10 pages doi:10.1155/IJMMS/2006/69562
[7] 秦惠增、商妮娜, 第五类Painlevé方程解的渐近性态分析,数学学报 Vol.49,No.1(2006) 225-230
[8] 商妮娜、秦惠增,一类非线性常微分方程振荡解的渐近表示,应用数学学报,Vol.29 No.5(2006)933-946
[9] Huizeng Qin and Youmin Lu, An Asymptotic Expression of a Group of Oscillating Solutions to the General Second Painlevé Equation, Communications in Applied Analysis,V10.2&3(2006) 269-282.
[10] 秦惠增 、商妮娜 ,一类双曲型方程的Huygens原理,数学学报,Vol.49,No.4 (2006) 797-802
[10] Nina Shang and Huizeng qin, Comment on the paper: “Forced oscillation of certain neutral hyperbolic equations with continuous distributed deviating arguments”,[Math. Computer. Modeling 49 (2009) 1211–1220]Volume 50, Issues 7-8, (2009) 1128-129 (SCI,EI)
[11] Huizeng Qin and Yongsheng Ren, Oscillation Theorems for Second-Order Damped Nonlinear Differential Equations, International Journal of Differential Equations Volume 2009 (2009), Article ID 714357, 15 pagesdoi:10.1155/2009/714357
[12] N Shang, F Xu, H Qin Oscillating Criteria on Second Order Nonlinear Differential Equations with Distributed Deviating Arguments and Delay Term, Int. Journal of Math. Analysis, Vol. 3, no. 9(2009) 431-441.
[13] Huizeng Qin and Youmin Lu,Oscillation Criteria for Second Order Differential Equations with Distributed Deviating Arguments and Damping Term,International Journal of Pure and Applied Mathematics Volume 48 No.2( 2008) 253-266
[14] Nina Shang and Fuyi Xu and Huizeng Qin, A note on oscillation criteria for forced second-order nonlinear differential equations with damping, Computer Engineering and Technology (ICCET), 2010 2nd International Conference Date:16-18 April 2010(EI)
[15] Nina Shang and Fuyi Xu and Huizeng Qin,Oscillations of even order nonlinear differential equations with distributed type deviating arguments, Computer Engineering and Technology (ICCET), 2010 2nd International Conference Date:16-18 April 2010(EI)
[16] Huizeng Qin, Youmin Lu, Oscillation Theorems for Second Order Forced Ordinary Differential Equation with Mixed Nonlinearities, Applied Mathematical Sciences, Vol. 5, 2011, no. 39, 1909 - 1920
[17] Huizeng Qin and Youmin Lu, Integrals of Fractional Parts and Some New Identities on Bernoulli Numbers, Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 15, 745 – 761
[18] Huizeng Qin, Two Conjectured Bernoulli Number Identities, Problem 11-001, Problems and Solutions (Siam)
[19] Ovidiu Furdui, Huizeng Qin, Hui-zeng Qin, ADVANCED PROBLEMS AND SOLUTIONS, The Fibonacci Quarterly. H-691(august 2010) and H-699(February 2011)
[20] Nina Shang, Huizeng Qin, Comments on the paper:“Oscillation of second-order nonlinear ODE with damping”[ Applied Mathematics and Computation 199 (2008) 644-652], Applied Mathematics and Computation, 218 (2011) pp. 2365-2366(SCI)
[21] O. Furdui and H.Z. QIN, When is the limit equal to the supremum norm of f?,CREATIVE MATH. & INF.20 (2011)